
33

Decision-Making Techniques for Software Architecture Design:
A Comparative Survey

DAVIDE FALESSI and GIOVANNI CANTONE, University of Rome, “Tor Vergata”
RICK KAZMAN, Carnegie Mellon University and University of Hawaii
PHILIPPE KRUCHTEN, University of British Columbia

The architecture of a software-intensive system can be defined as the set of relevant design decisions that
affect the qualities of the overall system functionality; therefore, architectural decisions are eventually
crucial to the success of a software project. The software engineering literature describes several techniques
to choose among architectural alternatives, but it gives no clear guidance on which technique is more suitable
than another, and in which circumstances. As such, there is no systematic way for software engineers to
choose among decision-making techniques for resolving tradeoffs in architecture design. In this article, we
provide a comparison of existing decision-making techniques, aimed to guide architects in their selection.
The results show that there is no “best” decision-making technique; however, some techniques are more
susceptible to specific difficulties. Hence architects should choose a decision-making technique based on the
difficulties that they wish to avoid. This article represents a first attempt to reason on meta-decision-making,
that is, the issue of deciding how to decide.

Categories and Subject Descriptors: D.2.10 [Software Engineering]: Design—Methodologies

General Terms: Design

Additional Key Words and Phrases: Decision-making, architecture, design decisions

ACM Reference Format:
Falessi, D., Cantone, G., Kazman, R., and Kruchten, P. 2011. Decision-making techniques for software
architecture design: A comparative survey. ACM Comput. Surv. 43, 4, Article 33 (October 2011), 28 pages.
DOI = 10.1145/1978802.1978812 http://doi.acm.org/10.1145/1978802.1978812

1. INTRODUCTION

1.1. Aim and Vision

Software architecture is designed during the early phases of the development process
and it facilitates or constrains the achievement of specific functional requirements,
nonfunctional requirements (quality attributes), and business goals; thus, architec-
tural decisions are crucial to the success of a software-intensive project [Falessi et al.
2007a; Hofmeister et al. 2007]. Therefore, software architects need a reliable and rig-
orous process for selecting architectural alternatives and ensuring that the decisions
made mitigate risks and maximize profit. In our view, a good decision-making tech-
nique is one that guides the user toward better, perhaps optimal, alternatives, and, at

Authors’ addresses: D. Falessi and G. Cantone, Department of Informatics, Systems and Production
Engineering, University of Rome “Tor Vergata,” Via di Tor Vergata 101, 00133 Rome, Italy; email:
falessi@ing.uniroma2.it; cantone@uniroma2.it; R. Kazman, Software Engineering Institute, Carnegie
Mellon University, 4500 Fifth Avenue, Pittsburgh, PA 15213 and Shidler College, University of Hawaii, 2404
Maile Way, Honolulu, HI 96822; email: kazman@sei.cmu.edu; P. Kruchten, Department of Electrical and
Computer Engineering, The University of British Columbia, 4046-2332 Main Mall, Vancouver, BC, V6T 1Z4,
Canada; email: pbk@ece.ubc.ca.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2011 ACM 0360-0300/2011/10-ART33 $10.00

DOI 10.1145/1978802.1978812 http://doi.acm.org/10.1145/1978802.1978812

ACM Computing Surveys, Vol. 43, No. 4, Article 33, Publication date: October 2011.



33:2 D. Falessi et al.

Relevant difficulties to avoid?

Elicitation of the 
expected/relevant 
difficulties to avoid

YES

Using the ranking table to 
select the decision-making 

technique to adopt

NO Technique adoption

Fig. 1. A systematic process for selecting/tuning a decision-making technique to adopt for resolving tradeoffs
in software architecture design.

the same time, is easy to use. The adoption of a poor decision-making technique may
imply several difficulties which in turn provoke the selection of a worse alternative.
For example, in complex projects, several designers may have different interests or
concerns and therefore different views of the system. As a result, they adopt different
vocabularies; for example they might use a single word to define a quality attribute
such as performance, which means something specific to them (e.g., worst-case latency),
but something different to another stakeholder (e.g., an administrator might interpret
performance as the efficient use of system resources, and an end user might understand
it as referring to the time it takes to learn the system). These differences in interpre-
tation tend to cause misunderstandings [Gilb and Brodie 2005; Moore et al. 2003].
Such misunderstandings may provoke the selection of a wrong alternative, which in
turn causes client dissatisfaction and eventually a major rework to satisfy the real
stakeholders’ needs.

Brooks [1987] claimed that there is no silver bullet in software engineering; similarly
there is no silver bullet in decision-making. In fact, each decision-making technique
defines its own conceptual model—its own ontology—of the world to which it applies
and the entities it manipulates, or creates, and their relationships. These conceptual
models, being models, emphasize some aspects and abstract others. Such abstracted
aspects may cause difficulties for decision-makers when resolving tradeoffs in software
designs. In theory, we can create a model encompassing a wider world, but the more
complex the associated conceptual model, the harder the technique is to use [Karlsson
et al. 2006]. Consequently, the complexity of models on which the decision-making tech-
nique is based has to be properly aligned with the application context. The literature
describes several techniques to choose and analyze architectural alternatives; how-
ever, it does not describe under which circumstances a technique is more suitable. This
results in no clear guidance for software architects to choose among decision-making
techniques [Harman 2007], and our article aims to fill this gap. The key point of this ar-
ticle is to rank existing decision-making techniques according to the degree of difficulty
that architects may encounter when employing each technique. Figure 1 describes our
vision of a systematic process for selecting and tuning the decision-making technique
to adopt for resolving tradeoffs in software architecture design. We assume that the
decision-makers understand the difficulties or issues that they wish to avoid. By us-
ing the proposed ranking table, they can select the most appropriate decision-making
technique to adopt—or the one least susceptible to anticipated difficulties.

1.2. Terminology Schema

The terminology used in software engineering varies considerably from author to
author. Therefore, to avoid misunderstandings, Figure 2 describes the relationships

ACM Computing Surveys, Vol. 43, No. 4, Article 33, Publication date: October 2011.



Decision-Making Techniques for Software Architecture Design 33:3

Decision-Making Technique

Activity

Mechanism

Difficulty

exposes ->

1..*

Exposition

Level of susceptibility

Characterization Schema16

Quality Model

16
uses ->

4

System

Desired Property

Level of importance

1..*

Quality Attribute

Architecture

Decision

1..*

Alternative

has ->

1..*

#fulfills -> 1..*

Fulfillment

Fulfillment level
Uncertainty

constraints or facilitates ->

<- drives

selects ->

1

has 1..*1..*

Ranking Table

defines ->

<- guides the selection of

Model 

Meta-Model 

Fig. 2. Relations among the main terms used in the article.

among the terms used in our context by adopting a UML class diagram formalism;
dark boxes represent the main contributions of the article. The system to develop (for
example, a bookstore) is viewed as a set of desired properties; some of these are func-
tional (e.g., the system must accept credit cards) others are nonfunctional (e.g., the
system must be secure). A quality attribute is defined as a desired nonfunctional prop-
erty, for example, security, performance, power consumption, memory capacity, and
mean time between failures. Stakeholders may make explicit specifications concerning
some of those attributes and, for each of these, a level of importance. For instance,
some stakeholders may consider “security” very important (high level of importance)
and “performance” less so.

ACM Computing Surveys, Vol. 43, No. 4, Article 33, Publication date: October 2011.



33:4 D. Falessi et al.

The architecture of a system is a set of decisions; it facilitates or constrains the
achievement of the desired system properties. An instance of a decision is, for example,
the “type of persistence mechanism” to adopt. An alternative is a choice available
for a given decision; for example, the decision “persistence method” could include the
alternatives “file system” and “DBMS.” Decisions have different levels of abstraction
and there are relations between decisions. An instance of decision that is less abstract
than “persistence method” is “type of DBMS,” which then includes the alternatives
“RDBMS” and “OODBMS.”

Let us note that, in the current literature, the term decision assumes different mean-
ings; in this article it represents an issue to solve, rather than an alternative (which
is here called alternative). In general, different alternatives are more or less capable
of meeting a quality attribute goal; for example, the alternative “DBMS” may be con-
sidered more “reliable” and less “cheap” than the alternative “file system.” The level
of fulfillment describes the ability of an alternative to meet a specific response level of
a desired quality attribute. The uncertainty is defined as the risk of an alternative in
providing a specific level of fulfillment. For instance, an innovative middleware may
provide higher performance and higher uncertainty than a consolidated technology,
where “higher” is a level of fulfillment for the quality attribute “performance” (perhaps
defined as number of transactions per second or worst-case latency).

Eventually, for a given system, the architect has a set of quality attributes to take into
consideration and to meet as much as possible by making decisions, that is, selecting
the right set of alternatives, see Figure 5.

Software architecture determines not only how the system should be constructed
but also guides its evolution. Therefore, stability and resilience should be taken into
consideration while deciding on an architecture [Jazayeri 2002].

A decision-making technique describes a systematic way of choosing an alternative
among a finite number of given ones. The decision-making process encompasses several
activities; in this article we focus on four specific activities: quality attribute description,
quality attribute importance determination, fulfillment description, and uncertainty
description (these will be discussed in detail in Section 3). These activities are enacted
in every available (i.e., existent and known) decision-making technique. A mechanism
concerns, and eventually prescribes, a specific way for enacting an activity, that is, it is
the how of that activity. Therefore, since decision-making techniques share the same
four activities, their differences come from the ways they enact these activities, that
is, from their mechanisms. We call a characterization schema a structure of activities
and the related mechanisms, which can differentiate every available decision-making
technique. From the point of view of an architect, a decision-making technique is one
point in a four-dimensional space, one dimension per activity; from this perspective,
a decision-making technique can be seen as a tuple of four mechanisms, one for each
activity.

A difficulty (see Section 4) is a problem that an architect may encounter while adopt-
ing a decision-making technique. An instance of a difficulty, for example, “Insufficient
time” discussed in Section 4, is the situation in which the decision-making technique
requires too much time to guide the architects in selecting the best alternative, com-
pared with the time allotted for developing the project. All the mechanisms that we
have surveyed for a specific architecture design activity are able to perform the ac-
tivity; they differ in their likelihood to cause specific difficulties. The term level of
susceptibility (Section 5) describes the extent to which a mechanism tends to provoke
a difficulty. Susceptibility is a (un-)quality attribute of a mechanism; hence architects
should tend to adopt the technique that, as a whole (i.e., as a tuple of four mechanisms),
is least susceptible to unwanted difficulties. A quality model (Section 5) describes, for
each mechanism, for each difficulty, the level of susceptibility of the mechanism to

ACM Computing Surveys, Vol. 43, No. 4, Article 33, Publication date: October 2011.



Decision-Making Techniques for Software Architecture Design 33:5

Commonalities 
identification

Does each technique have one 
mechanism for each activity?

Variabilitity 
identification

Set of 
mechanisms and 
related activities

Characterization 
Schema

Difficulties 
identification

YES

Set of 
difficulties

Relating difficulties to 
mechanisms

Ranking of 
mechanisms

Quality model

NO

Ranking of existing 
techniques

Ranking table

Is each difficulty related to at least 
one mechnaism?

Applying existing techniques 
to the schema

YES

Fig. 3. The process enacted to support the selection of a decision-making technique for choosing among
architectural alternatives. Activities are depicted in white background rectangles while their outputs are
depicted in wavy-bottom rectangles.

the difficulty. The application of such a quality model to the available decision-making
techniques provides a ranking table of these techniques (Section 6). The ranking table
provides a useful means for selecting and tuning the decision-making technique to
adopt, according to unwanted difficulties.

1.3. Approach and Structure of Article

Figure 3 describes the approach we defined to support the selection of a decision-
making technique for choosing among architectural alternatives. Activities are de-
picted in white background rectangles while their outputs are depicted in wavy-bottom
rectangles.

We began the present work with an analysis of the characteristics of existing
decision-making techniques; in particular, we wanted to identify their commonalities
and variability. Hence we defined a set of mechanisms for enacting the activities
involved. Then we created a characterization schema by structuring mechanisms and
activities with the constraint that each mechanism belongs to one activity. Such a
characterization schema is presented in Section 3; it provides a means to differentiate
among decision-making techniques. Afterward, we validated the schema by applying
to it 15 existing decision-making techniques (see Section 3.3). We iteratively refined
the characterization schema until each of the existing decision-making techniques had

ACM Computing Surveys, Vol. 43, No. 4, Article 33, Publication date: October 2011.



33:6 D. Falessi et al.

exactly one mechanism for each activity. Once the decision-making techniques were
clearly differentiated, we determined the criteria to be used to select the most appropri-
ate technique(s). We indentified a set of difficulties that architects may encounter while
adopting choosing among architectural alternative (Section 4). Then, according to our
industrial experience and the literature, we related the difficulties to the mechanisms
of the characterization schema. We iteratively refined the set of difficulties and the
characterization schema until each difficulty was related to at least one mechanism
and vice versa. Again, according to our industrial experience and the literature
(Section 5), we ranked the mechanisms according to their level of susceptibility to a
given difficulty. This eventually defined a quality model of decision-making techniques
(Section 6). Finally, because each of the existing decision-making technique is a given
combination of (already ranked) mechanisms, we automatically ranked each technique
according to its level of susceptibility to a given difficulty. This eventually defined a
ranking table of decision-making techniques that supports architects in selecting the
most suitable decision-making technique for resolving tradeoffs during the software
architecture design process (Section 7). To help readers who are unfamiliar with
software architecture, Section 2 paves the way by introducing some basic concepts.

2. BACKGROUND

2.1. Introduction to Software Architecture

Software architecture has emerged as an important field of software engineering for
managing the realm of large-system development and maintenance [Bass et al. 2003;
Booch 2007; Shaw and Clements 2006; Taylor et al. 2009]. The main intent of software
architecture is to provide intellectual control over a sophisticated system of enormous
complexity [Kruchten et al. 2006].

There are many definitions of software architecture [SEI 2007]. The Rational Unified
Process (RUP) [Kruchten 2003], building upon Shaw and Garlan [1996], defined a
software architecture “as the set of significant decisions about the organization of a
software system: selection of the structural elements and their interfaces by which
a system is composed, behavior as specified in collaborations among those elements,
composition of these structural and behavioral elements into larger subsystem,
architectural style that guides this organization. Software architecture also involves
usage, functionality, performance, resilience, reuse, comprehensibility, economic and
technology constraints and tradeoffs, and aesthetic concerns (page 84).”

Software architecture is developed during the early phases of the software develop-
ment process. Therefore, it significantly constrains and facilitates the achievement of
requirements and business goals. Hence reviewing the software architecture represents
a valid means to check the system conformance and to reveal any potentially-missed
objectives early on [Maranzano et al. 2005].

Every software system has a software architecture; it can be implicit or explicit, that
is, documented and specifically designed to fulfill predefined business goals and quality
requirements. When a system needs to be maintained, it may be necessary to spend
considerable effort in documenting the underlying software architecture even if it has
to be recovered (reverse engineered) [Ding and Medvidovic 2001].

2.2. Software Architecture Design

Software architecture design methods aim to derive the software architecture from the
functional and quality requirements. There are three main factors that drive software
architecture design [Kruchten 1995]: reuse, method, and intuition, as described in the
following.

ACM Computing Surveys, Vol. 43, No. 4, Article 33, Publication date: October 2011.



Decision-Making Techniques for Software Architecture Design 33:7

System Requirements & 

Project context

Evaluation

description

Architecture 

acceptable?

Requirements

Analysis

Architectural significant 

aspects

Decision-Making

Candidate SW 

components and 

Inter-relations

YES

Architectural 

Evaluation

NO

Fig. 4. The software architecture design process.

—Reuse. Architecting is a difficult task that reuse can help simplify. The fact that a
system was successful and used a certain component, rule, or responsibility argues
for the reuse of such issues. The source of the reuse can be an earlier version of the
system, another system sharing key characteristics, architectural patterns [America
et al. 2003], or organization-wide experiences [Basili et al. 1992]. Domain-specific
Software Architecture [Li et al. 1999] and Product Line Architecture [Bosch 2000;
Clements and Northrop 2002; Jazayeri et al. 2000] are examples of two successful
marriages between software architecture and reuse.

—Method. There are a number of languages, process models, and methods that pre-
scribe a systematic technique for bridging the considerable gap between software
architecture and requirements.

—Intuition. Many architects rely on the invention of software architecture elements
and their relations based purely on their own experience.

The proportion among these three software architecture sources depends on the
experience of architects, their educational background, and the novelty of the system.
Figure 4 describes software architecture design process as a whole: it is an iterative
process with the following three phases.

(1) Understand the problem. This phase consists of analyzing the problem and
extracting the most critical needs from the big, ambiguous problem description.
This phase is largely about requirements analysis, focusing on revealing those
stakeholders’ needs that are architecturally significant [Eeles 2005]. This is done

ACM Computing Surveys, Vol. 43, No. 4, Article 33, Publication date: October 2011.



33:8 D. Falessi et al.

by determining the desired quality attributes of the system to build, that, together
with the business goals, drive the architectural decisions. The Quality Attribute
Workshop [Barbacci et al. 2003] is an approach for analyzing and eliciting the
requirements that are architecturally significant.

(2) Find a solution for the problem. This phase consists of decision-making to fulfill
the stakeholders’ needs (as defined in the previous phase) by choosing the most
appropriate architectural design option(s) from the available alternatives. In this
phase the properties of software components and their relationships are defined.
The present article is focused on the activities of this phase.

(3) Evaluate the solution. Finally it is necessary to decide whether and to what degree
the chosen alternative solves the problem. In the architecture context, this phase
consists of architectural evaluation. Comprehensive descriptions related to this
activity can be found in Ali Babar et al. [2004], Clements et al. [2002], Dobrica and
Niemelä [2002], and Obbink et al. [2002].

After having evaluated the chosen alternative (phase 3), if the alternative is not
acceptable, but the problem is still considered feasible, the architect (re)analyzes the
requirements or selects another viable alternative. The process ends when the provided
solution is considered adequate (or when the project is abandoned). There is also the
case where the problem is deemed infeasible as specified and the process continues by
changing the system requirements. This case represents a secondary flow and it is less
common, which is why it is not included in Figure 4.

Because the software architecture design process focuses on deriving an architecture
from software requirements, it includes (but is not merely the application of) a decision-
making technique. The decision-making technique focuses on the issue of selecting
among a number of alternatives—the tactics [Bass et al. 2003]—for achieving the
system’s desired quality attributes [Barbacci et al. 2003].

Although “many of the design methods were developed independently, their descrip-
tions use different vocabulary and appear quite different from each other . . . they have
a lot in common at the conceptual level” [Hofmeister et al. 2007, page 1]. Differences
among software architecture design methods include the level of granularity of the de-
cisions to make, the concepts taken into account, the emphasis on phases, the audience
(large vs. small organization), and the application domain. Falessi et al. in [2007a]
and Hofmeister et al. in [2007] provided discussions regarding the state of the art for
the available software architecture design methods by focusing on variabilities and
commonality, respectively.

To define the architecture of a software system, the architects have to balance the
many forces influencing the system development, as well as to work with all the stake-
holders. The software architect “sits in between” all the stakeholders to reconcile their
needs and wants, as Figure 5 shows.

Design decisions are the core of software architecture [Bosch 2004; Jansen and Bosch
2005]. The life of a software architect is a long, and sometimes painful, succession of
suboptimal decisions made partly in the dark; this is due to the following reasons.

—Requirements are frequently captured informally while software architecture is spec-
ified informally [Grünbacher et al. 2004]. Consequently, there is a semantic gap to
deal with.

—Quality attribute requirements are difficult to specify in an architectural model
[Grünbacher et al. 2004].

—Software is often developed in an iterative way. Certain types of requirements cannot
be well defined in the early development phases [Nuseibeh 2001]. This implies that
sometimes architects have to make their decisions based upon vague requirements.

ACM Computing Surveys, Vol. 43, No. 4, Article 33, Publication date: October 2011.



Decision-Making Techniques for Software Architecture Design 33:9

EndEnd--useruser

CustomerCustomer

DeveloperDeveloper

Sales and fieldSales and field
supportsupport

MaintainerMaintainer

DevelopmentDevelopment
managermanager

SystemSystem
administratoradministrator

Functionality

ArchitectArchitect

Ease of use

Performance and throughput

Reliability

Ease of customization

Price

Development costs, skills

On time delivery

Stability and maintainability

Ease of integration

Ease of diagnosing problems

Ease of introducing modifications

Testability and traceability

Structure and dependencies between parts

Ease of installation

?

Fig. 5. The architect’s balancing art (developed in 1994–1998 by Rational Software).

—Architectural decisions are hard to change after they are made because subsequent
decisions are taken based on them; for example, detailed design and programming.

—Stakeholders dealing with software architecture issues view the system from dif-
ferent perspectives; this usually implies conflicting goals and expectations among
developers and even differences in terminology. Therefore, architects are requested
to find the right tradeoff by balancing the many forces influencing the system devel-
opment, as well as to work with all the stakeholders.

—Software architecture not only determines how the system should be constructed
but also guides its evolution. Therefore, stability and resilience should be taken into
consideration while deciding on an architecture [Jazayeri 2002].

2.3. Resolving Architecture Tradeoffs Through Multiattribute Decision-Making Techniques

There are three main types of decision-making techniques that are commonly used in
software engineering.

—Keeping the first available alternative. Some of the design decisions taken during
the development process do not include any consideration of, or selection among,
alternatives. Designers sometimes take the first alternative that seems to meet
the given requirements without searching for better ones [Li et al. 2009]. Such an
approach supports the project schedule, but not the optimization of the overall system
design. This is known as naturalistic decision-making, where decisions are studied

ACM Computing Surveys, Vol. 43, No. 4, Article 33, Publication date: October 2011.



33:10 D. Falessi et al.

as the product of intuition, mental simulation, metaphor, and storytelling [Klein
1999].

—Selecting among a finite number of alternatives. Typically, the architect has a finite
set of alternatives to choose from. The so called multiattribute decision-making tech-
niques address the issue of selecting among a finite number of alternatives. This is
the classic and rational approach promoted by any textbook on engineering.

—Selecting among an infinite number of alternatives. Some decisions in software engi-
neering consist of determining the right balance among conflicting objectives. For ex-
ample, finding the right balance between cohesion and coupling is a typical dilemma
when defining classes in an object-oriented application; in this case, the number of
available alternatives (i.e., the feasible classes) is practically infinite. The field of
multiobjective decision-making techniques (and, more generally, the optimization re-
search field) provides guidelines for selecting among an infinite number of available
alternatives based on the definition of goals and constraints.

In the remainder of the article, we focus on multiattribute decision-making techniques
because these address the issues of selecting among a finite number of available alter-
natives, which is the most common case during software architecture design.

2.4. Related Work

Many studies helped us to shape the present work. However, to the best of our knowl-
edge, no study has provided systematic guidance on how to select a decision-making
technique for choosing among design alternatives.

We have been mainly inspired by the SEI report by Moore et al. [2003]. In this
report, the authors discussed how they changed a decision-making technique (i.e., the
first version of CBAM from Kazman et al. [2001]) to avoid specific difficulties. Our
work shares similarities with the Moore’s but we take into account a larger spectrum
of difficulties and variability in decision-making techniques. Moreover, we judge the
second version of CBAM [Moore et al. 2003] as being less susceptible than the first
Kazman et al. [2001] to the set of difficulties that are common in SEI practices.

Let us note that ATAM [Bass et al. 2003] deals with architectural tradeoffs, quality
attribute utility trees and sensitivity points. ATAM does a good job of differentiating
quality attributes from both business and technical perspectives by assigning priorities
to particular attributes. However, because CBAM includes and extends on ATAM, in
the remainder of the article we will focus on the former.

3. CHARACTERIZATION SCHEMA FOR DECISION-MAKING TECHNIQUES

3.1. Introduction

To reveal commonalities and variability among decision-making techniques for
software architecture design, this section provides a characterization schema. Figure 6
describes the proposed characterization schema by using a feature tree model [Gomaa
2004; Jazayeri et al. 2000]. Figure 3 described a number of phases involved in
architecture design; Figure 6 focuses on the decision-making phase.

To describe the items in Figure 6, we proceed first by depth, that is, by reviewing all
the mechanisms available for each available activity to be performed. Accordingly, in
the remainder of this section, the name of an activity (i.e., one out of four activities) is
used as the title of a subsection; the names of the related mechanisms are printed in
italic.

3.2. Elements

3.2.1. Quality Attribute Description. When making a decision, the architect must take into
consideration several stakeholders who usually desire different quality attributes for

ACM Computing Surveys, Vol. 43, No. 4, Article 33, Publication date: October 2011.



Decision-Making Techniques for Software Architecture Design 33:11

= A adopts o  C

Decision-making
technique

Fulfillment
description 

A

C

B
    = A adopts B andA

C

B

Term + Use case

Term 

Term + Measure

Term + Measure + Use case

Quality attribute 
description 

MechanismActivity  Phase 

Quality attribute 
importance

Problem space

Solution space

Utility curve

Elicited weight

Direct 

No Articulation 

Elicited ratio

Direct ratio

Order

On/Off

Uncertainty
description 

eAs q quality attribute

Related to each QA

Stakeholders’ disagreement

None

Fig. 6. A characterization schema of decision-making techniques for resolving tradeoffs in software archi-
tecture design.

ACM Computing Surveys, Vol. 43, No. 4, Article 33, Publication date: October 2011.



33:12 D. Falessi et al.

the system exhibit, such as performance, modifiability, cost, etc. To avoid misinterpreta-
tions, it is extremely important that stakeholders have a common and clear understand-
ing of every quality attribute. In the following, we show four different mechanisms for
describing the desired quality attributes, which we have empirically determined from
an examination of existing decision-making techniques.

Just a term. The quality attribute of an issue to solve (or optimize) is described by
using a term. For instance, in the technique that Chung et al. [1999] proposed, the
term performance describes a quality attribute. In general, using just a term requires
little effort from, and little interaction among, the stakeholders but, as stated in the
introduction, the use of this term may cause misunderstandings [Gilb and Brodie 2005;
Moore et al. 2003]. Hence, the use of just a term for a quality attribute description is
only effective in a context where all the stakeholders have the same understanding of
the issue to solve.

Term and use case. The quality attribute of an issue is related to the description of
an appropriate use case. For instance, Kontio [1996] proposed a technique in which
both a term (e.g., performance) and a system use case are utilized to describe a quality
attribute. Using term and use case for describing attributes should help in avoiding
misunderstandings about the meaning of quality attributes [Moore et al. 2003], but it
might require stakeholders to spend significant effort (in analyzing the given use case).
Large and/or complex projects require designers with specific skills and responsibili-
ties; in such a context, different stakeholders have different views of the system and
therefore they could use a term with different concepts in mind without the context of
a use case.

Term and measure. The quality attribute of the issue to solve (or optimize) is described
by using a term and a measure. For instance, in the technique that Kazman et al.
[2001] proposed, the term performance and the measurement unit seconds are utilized
to describe a quality attribute. While this type of attribute description requires little
effort and limited interactions among stakeholders, it may avoid misunderstandings
regarding the perceptions behind a term [Gilb and Brodie 2005].

Term, use case, and measure. The quality attribute of the issue is related to a sce-
nario description and a related measure. For instance, Moore et al. [2003] proposed a
technique in which a term (e.g., performance), a specific use case of the system, and
a measurement unit (e.g., seconds) are utilized to describe a quality attribute. While
this type of attribute description again requires stakeholders to spend significant effort
in analyzing the related use case, it helps to avoid misunderstandings with regard to
the quality attribute’s meaning and the perceptions behind the term [Gilb and Brodie
2005; Moore et al. 2003; Ozkaya et al. 2008].

3.2.2. Quality Attributes Importance Description. Not all the quality attributes are equally
important for a stakeholder; some are more desirable than others. We therefore need
a mechanism to describe the extent to which a quality attribute is desired.

No articulation. Some decision-making techniques (e.g. Dabous and Rabhi [2006])
consider all quality attributes as equally desirable; hence the level of desire for a
quality attribute is not expressed.

Direct weight. This is the most commonly used mechanism. It consists in representing
the stakeholder’s desire for a quality attribute by means of a scaled value; the higher the
value, the more important the attribute. For instance, in the technique that Kazman
et al. [2001] proposed, stakeholders give a score to each quality attribute with the
constraint that, per each scenario, the total of scores of all the quality attributes is 100.
Another example was described in Cantone and Donzelli [1999], where a hierarchical
approach to direct weighting was provided.

ACM Computing Surveys, Vol. 43, No. 4, Article 33, Publication date: October 2011.



Decision-Making Techniques for Software Architecture Design 33:13

Elicited weight. Saaty [2000] devised the Analytic Hierarchy Process (AHP) based
on the idea of decomposing a multiple-criteria decision-making problem into a quality
attribute hierarchy. At each level in the hierarchy, the relative importance of a qual-
ity attribute is revealed by pairwise comparisons. The effort needed in applying this
method can be estimated by observing that, if n is the number of quality attributes, the
method requires an amount of n∗(n− 1)/2 comparisons. AHP differs from direct weight
in providing a systematic approach for eliciting weights. AHP might yield more pre-
cise results but requires more effort than the direct-weight mechanism. For instance,
the technique that Svahnberg et al. [2003] proposed adopts the AHP mechanism to
describe the relative importance of quality attributes.

Utility curve. Similar to direct weight, with utility curve the “weight” changes ac-
cording to the level of fulfillment of the quality attribute. For instance, a performance
response of less than 3 ms is greatly desired, between 3 and 1 ms it is just desired, and
less than 1 ms it is not even desired.

Kano [1993] introduced differences between needs; in particular, he identified four
classes of needs (desires): linear, attractive, must be, and indifferent. For each attribute
of the kind must be, an optimal level is specified for mandatory fulfillment. For in-
stance, the frequency of a cathode monitor is an attribute to consider in the kind must
be because there is more dissatisfaction below a specific fulfillment threshold than
satisfaction above it. In fact, a frequency less than 100 Hz provokes flicker effects that
cause user dissatisfaction; conversely, a frequency higher than 100 Hz would not be
perceived by human eyes, so it would not be desired.

For attributes of the kind attractive, there is no specified level to fulfill; however,
an improvement of the attribute fulfillment implies an improvement of the benefits.
For instance, from a customer point of view, the lower the cost of a COTS product,
the greater the project manager’s satisfaction. The technique that Moore et al. [2003]
proposed associates a utility curve with a specific quality attribute scenario. The utility
curve allows the user to specify a continuous range of preferences relating any response
measure to happiness (utility). This mechanism is thus more accurate and more flexible
than direct weight and AHP, by allowing for nonlinear nonmonotonic relationships.
However, using this mechanism requires considerably more stakeholder effort.

3.2.3. Description of Fulfillment as Provided by an Alternative. Each different architectural
alternatives as addresses different quality attributes to a different extent. This sub-
section presents mechanisms available for describing the fulfillment level, as provided
by the alternatives, for a specific quality attribute.

On/Off. Two opposite values describes whether to accept or reject a fulfillment, as
provided by an alternative for a quality attribute. For instance, in the technique that
Ncube and Maiden [1999] proposed for COTS selection, a COTS product “satisfies” or
“does not satisfy” a given requirement.

Order. Fulfillment is roughly measured by an ordinal scale, by using some terms or
symbols, including digits, in a given order: for example, terms like {poor, interesting,
good, excellent} or symbols like {–, -, +, ++}, as in Chung et al. [1999]). This mechanism
is particularly suitable where the alternatives are at a high-level of abstraction and
it is not yet possible to provide more precise measures for fulfillment. For instance,
a higher-level alternative like an architectural pattern can be coarsely considered
as “good” or “bad” with respect to a quality attribute. This is due to the fact that we
cannot relate an architectural pattern to a more precise quality attribute measurement
model because lower-level design decisions (e.g., number and type of elements in the
style, topology, programming language, algorithm, and other implementation decisions)
would affect the level of fulfillment of such a quality attribute [Chung et al. 1999].

ACM Computing Surveys, Vol. 43, No. 4, Article 33, Publication date: October 2011.



33:14 D. Falessi et al.

The main drawback of this mechanism is that it provides excessively coarse-grained
descriptions that, in turn, would not differentiate between alternatives.

Direct ratio. The level of fulfillment that an alternative provides for a quality at-
tribute is described by using a ratio (or a percentage) which is much more accurate
than the ordinal scale. Using a ratio is particularly suitable in cases where the quality
attribute to fulfill is not atomic, that is, it makes sense to decompose it in subparts
[Cantone and Donzelli 1999]. For instance, the technique that Andrews et al. [2005]
proposed uses a ratio in the range of 0 to 1 for describing the ability of an alternative
to fulfill a given quality attribute.

Elicited ratio. The AHP provides a further mechanism to describe the ability of an
alternative to fulfill a quality attribute. As already mentioned, AHP differs from direct
ratio in offering a rigorous approach for the ratio elicitation; consequently, it might
yield finer results. However, AHP requires more effort than direct ratio. For instance,
the technique that Kontio [1996] proposed for COTS selection adopts AHP to determine
fulfillment level provided by an alternative.

3.2.4. Uncertainty Description. It is important to quantify the uncertainty (i.e. the re-
liability) of an alternative to provide a specific level of fulfillment. As a matter of
fact, different situations lead decision-makers to accept different levels of uncertainty.
For instance, risky alternatives should be avoided when dealing with safety-critical
systems. In general, the uncertainty associated with an alternative may depend on
well-understood properties (e.g., the mean time to failure of using a specific LAN) or
the level of understanding that decision-makers have about that alternative (e.g., it is
believed that a new middleware may provide a better response time and less reliability,
but, since the middleware is new, this belief has not been rigorously tested). The uncer-
tainty associated with an alternative can be described by adopting one of the following
mechanisms.

Uncertainty is not expressed. See, for instance, Bandor [2006]. The main drawback of
this mechanism is that you may have two alternatives showing the same performance
but different levels of uncertainty. In such a situation, without taking into account the
uncertainty factor, although they seem to be equivalent alternatives, in reality one is
objectively better than the other.

Uncertainty is inferred from disagreement among decision makers. As Svahnberg
et al. [2003] proposed, decision-makers can express the level of fulfillment of a specific
decision (without expressing the level of confidence in such estimation). Later, the
uncertainty related to such a decision is inferred from the level of disagreement among
the decision-makers.

Uncertainty is related to each quality attribute. As Cavanaugh and Polen [2002]
proposed, the amount of uncertainty of an alternative is proportional to the reciprocal
of the probability that such an alternative provides a given level of fulfillment for a
specific quality attribute. For instance, the solution of adopting a LAN would have a
low uncertainty associated with “high compatibility” but a medium uncertainty with
achieving “high security.” Note how this mechanism for describing the uncertainty
does not change according to the amount of knowledge on the solution performance
(i.e., the security of the LAN does not improve while improving the knowledge of
decision-makers about it).

Uncertainty as a quality attribute. As Gilb and Brodie [2005] proposed, uncertainty
can be used as a quality attribute representing the amount of knowledge and the degree
of uncontrollable variability of the solution’s performance. For instance, the solution
of adopting a LAN would have a low level of uncertainty because such a technology is
well understood.

ACM Computing Surveys, Vol. 43, No. 4, Article 33, Publication date: October 2011.



Decision-Making Techniques for Software Architecture Design 33:15

3.3. Validation: Characterizing Actual Decision-Making Techniques

We have found several techniques for choosing among architecture alternatives [Al-
Naeem et al. 2005; Andrews et al. 2005; Chung et al. 1999; Dabous and Rabhi 2006;
Gilb and Brodie 2005; Kazman et al. 2001; Moore et al. 2003; Svahnberg et al. 2003]
and COTS [Bandor 2006; Cavanaugh and Polen 2002; Kontio 1996; Lozano-Tello and
Gómez-Pérez 2002; Ncube and Maiden 1999; Wanyama and Far 2005], respectively.

Techniques for architectural design and COTS selection share the following charac-
teristics.

—They involve several stakeholders with different knowledge, views, and responsibil-
ities for the system.

—They deal with competing and conflicting objectives.
—There is a level of uncertainty both in the descriptions of requirements and in their

associated solutions.
—The decisions taken have strong interdependencies.

Tables I and II show 15 actual decision-making techniques (columns) and their
mechanisms (rows) according to the provided characterization schema. The aims of
such tables are as follows.

—Validating the characterization schema for completeness and correctness. Each tech-
nique has exactly one mechanism for each activity of the characterization schema
that is, it is one point in the four-dimensional space of decision-making.

—Validating the characterization schema for lightness. Each mechanism of the pro-
posed characterization schema has been used by at least one existing decision-
making technique. Hence the characterization schema is “light” in that it contains
just enough mechanisms, and no more.

—Validating the characterization schema for the ability to differentiate techniques.
There is no technique that has the same set of mechanisms that is, each technique
is represented by a distinct point in the four-dimensional space of decision-making.
Therefore, the characterization schema provides a means to differentiate among
available decision-making techniques.

—Revealing feasible techniques. Not all the four-tuples of mechanisms are actually
used; in fact, the existent techniques reveal feasible four-tuples of mechanisms.

3.4. Limitations

As with any attempt to characterize a complicated issue, the proposed characterization
schema has some limitations in describing the process of decision-making. In particular,
it doesn’t take into account the following issues:

—how to apply a given mechanism (i.e., how to find the fulfillment level, how to find
the amount of risk, etc.);

—how to take into account relations among decisions [Falessi et al. 2006; Kruchten
2004; Zimmermann et al. 2009];

—how to capture and share software architecture design rationale [Falessi et al. 2006,
2008; Kruchten et al. 2009; Schuster et al. 2007];

—how to optimize the decision process for a given architectural style (e.g. SOA)
[Zimmermann et al. 2007];

—how to search for alternatives [Kruchten 1995];
—how to empirically evaluate the goodness of an alternative [Falessi et al. 2010;

Falessi et al. 2007b];
—social concerns [Klein 1999].

ACM Computing Surveys, Vol. 43, No. 4, Article 33, Publication date: October 2011.



33:16 D. Falessi et al.

Ta
bl

e
I.

A
pp

ly
in

g
P

ro
po

se
d

C
ha

ra
ct

er
iz

at
io

n
S

ch
em

a
to

E
ig

ht
D

ec
is

io
n-

M
ak

in
g

Te
ch

ni
qu

es
(R

el
at

iv
e

to
S

of
tw

ar
e

D
es

ig
n)

.
x

D
en

ot
es

A
do

pt
io

n
of

G
iv

en
M

ec
ha

ni
sm

(R
ow

)
by

G
iv

en
Te

ch
ni

qu
e

(C
ol

um
n)

D
ec

is
io

n
-m

ak
in

g
te

ch
n

iq
u

es
K

az
m

an
D

ab
ou

s
G

il
b

an
d

A
l-

N
ae

em
S

va
h

n
be

rg
A

n
dr

ew
s

et
al

.
et

al
.

M
oo

re
et

al
.

an
d

R
ab

h
i

B
ro

di
e

et
al

.
et

al
.

C
h

u
n

g
et

al
.

R
ef

er
en

ce
[2

00
5]

[2
00

1]
[2

00
3]

[2
00

6]
[2

00
5]

[2
00

5]
[2

00
3]

[1
99

9]
N

am
e

of
th

e
A

F
ra

m
ew

or
k

de
ci

si
on

-m
ak

in
g

fo
r

de
si

gn
te

ch
n

iq
u

e
tr

ad
eo

ff
s

C
B

A
M

1
C

B
A

M
2

D
ab

ou
s

&
R

ab
h

iI
m

pa
ct

es
ti

m
at

io
n

Q
u

al
it

y
dr

iv
en

Q
u

al
it

y
dr

iv
en

S
of

tg
oa

ls
T

yp
e

D
es

ig
n

D
es

ig
n

D
es

ig
n

D
es

ig
n

D
es

ig
n

D
es

ig
n

D
es

ig
n

D
es

ig
n

Ju
st

a
te

rm
x

x
x

x
Q

u
al

it
y

T
er

m
an

d
u

se
ca

se
at

tr
ib

u
te

T
er

m
an

d
m

ea
su

re
x

x
de

sc
ri

pt
io

n
T

er
m

,u
se

ca
se

,
an

d
m

ea
su

re
x

x

Q
u

al
it

y
N

o
ar

ti
cu

la
ti

on
x

x
at

tr
ib

u
te

D
ir

ec
t

w
ei

gh
t

x
x

im
po

rt
an

ce
E

li
ci

te
d

w
ei

gh
t

x
x

x
de

sc
ri

pt
io

n
U

ti
li

ty
cu

rv
e

x
F

u
lfi

ll
m

en
t

O
n

/o
ff

x
de

sc
ri

pt
io

n
as

O
rd

er
x

pr
ov

id
ed

by
D

ir
ec

t
ra

ti
o

x
x

x
x

an
al

te
rn

at
iv

e
E

li
ci

te
d

ra
ti

o
x

x
N

ot
ex

pr
es

se
d

x
x

x
x

In
fe

rr
ed

fr
om

x
x

x
U

n
ce

rt
ai

n
ty

di
sa

gr
ee

m
en

t
de

sc
ri

pt
io

n
R

el
at

ed
to

ea
ch

qu
al

it
y

at
tr

ib
u

te
x

Q
u

al
it

y
at

tr
ib

u
te

ACM Computing Surveys, Vol. 43, No. 4, Article 33, Publication date: October 2011.



Decision-Making Techniques for Software Architecture Design 33:17

Table II. Applying Proposed Characterization Schema to Eight Decision-Making Techniques (Relative to COTS
Selection). x Denotes Adoption of Given Mechanism (Row) by Given Technique (Column)

Decision-making techniques
Lozano-Tello

and Cavanaugh Wanyama Ncube and
Gómez-Pérez and Polen and Far Kontio Maiden Bandor

Reference [2002] [2002] ISO [2005] [1996] [1999] [2006]
Name of the
decision-
making Quantitative
technique BAREMO CEP ISO 9126 NeMo-CoSe OTSO PORE methods

COTS COTS COTS COTS COTS COTS COTS
Type selection selection selection selection selection selection selection
Just a term x x x x x
Term and use
case

x

Quality
attribute

Term and
measure

description Term, use
case, and
measure

x

No x
Quality articulation
attribute Direct weight x x x x
importance
description

Elicited
weight

x x

Utility curve
Fulfillment On/off x
description as Order x x
provided by Direct ratio x x
an alternative Elicited ratio x

Not expressed x x x x x
Inferred from
disagreement

x

Uncertainty
description

Related to
each quality
attribute
Quality
attribute

x

However, the issues we left aside are not central to the purpose of this article. As
shown above, the characterization schema which resulted is correct, complete, “light,”
and capable of differentiating among techniques.

4. DIFFICULTIES IN SELECTING AMONG SOFTWARE ARCHITECTURE ALTERNATIVES

Section 3.3 provided a way to differentiate among techniques. The question that
naturally arises is, then, how to choose among the techniques and, most importantly,
based on what criteria? The software engineering literature neglects a comprehensive
description of quality attributes for decision-making techniques. In our view a good
decision-making technique is one that avoids the selection of a worse alternative
and, at the same time, it is easy to use. Therefore, the question is: What might
cause the decision-makers to select a wrong alternative, and what does it mean for a
decision-making technique to be “easy to use”? According to our personal experience in
architecting software intensive systems, we will answer these questions by describing
practical difficulties, and their related causes, that decision-makers may encounter
when selecting from alternatives. In particular, each of the following subsections
addresses a specific difficulty—named by the subsection title—which is given from
the point of view of the decision-maker. The causes of the difficulty are highlighted in
bold.

ACM Computing Surveys, Vol. 43, No. 4, Article 33, Publication date: October 2011.



33:18 D. Falessi et al.

4.1. Quality Attribute Meaning

Large or complex projects require the involvement of several designers, each with
different skills, responsibilities, knowledge, and views of the system. Therefore, they
often do not share a common understanding of the terms involved. This may be a source
of difficulty.

Difficulty: perception of a term. Because large systems provide different kinds of
functionality, it is possible that different stakeholders use the same term to refer to
different system issues. Example: stakeholder A is in charge of the “response time” for
system service α, and stakeholder B is in charge of the “energy consumption” for system
service β. By using just the term performance, stakeholders A and B could mean the
“performance” of two different system services, for example, α and β, respectively.

4.2. Solution Properties Interpretation

Difficulty: coarse-grained indication. The grain utilized for describing the satisfaction
of the stakeholder for an alternative (level of fulfillment) is so coarse that it neglects
relevant details. Example: by adopting a yes/no scale, the costs of two alternatives could
both be judged as acceptable, despite the fact that, by a finer scale, one solution might
be two times less expensive than the other. By using a yes/no scale, such a difference
would not influence the decision-making process, which might select the worse solution.

Difficulty: value perception. According to Gilb and Brodie [2005], page 278; “non-
numeric estimates of impact are difficult to analyze and improve upon.” Example:
consider a stakeholder who is interested in the usability of a system. The stakeholder
wants the system to be “highly” usable. But, unless this is quantified, it is difficult to
know whether the goal has or has not been achieved, or whether any given change to
the system would make it “more usable.”

Difficulty: underestimation of the uncertainty. According to Gilb and Brodie [2005],
page 278, “The uncertainty estimate is at least as important as the main estimate.”
Example: assume that a new alternative is available, for example, a middleware that
cuts annual costs in half. Also assume that stakeholders decide to choose this new
alternative, despite its associated risks. In practice, the real cost could double due,
for example, to the complexity of use and the programmer’s inexperience in building
components on that middleware.

4.3. Solution Selection

After applying a decision-making technique, the suggested solutions are described by
a palette that makes it difficult to select the most suitable solution.

Difficulty: too complex a description. The output of a decision-making technique
might be too complex to allow the selection of the most suitable solution. Example: the
decision is characterized by 20 alternatives and 30 quality attributes; the fulfillment of
each attribute is measured on an ordinal scale from 1 to 1000. Hence, to make decision,
stakeholders might have to analyze 30 quality attributes each in the range from 1 to
1000 per 20 times, which might result in a task that is too complex to complete.

Difficulty: too simple a description (multiple suitable solutions). The output of a
decision-making technique might propose too many solutions with the same score.
Example: let three alternatives and three quality attributes (e.g., cost, efficiency, and
reliability) characterize the current decision, with yes/no scales used for fulfillments;
for example, let yes be cost less than Euro 1,000.00, transaction response time less
than 1 s, and mean time to failure less than 8 months, respectively. It is possible that
all three alternatives satisfy all the quality attributes, based on the output of a given
decision-making technique.

ACM Computing Surveys, Vol. 43, No. 4, Article 33, Publication date: October 2011.



Decision-Making Techniques for Software Architecture Design 33:19

4.4. Stakeholders Disagreement

The suggested alternative does not fulfill the expectations of the stakeholders because
the decision-technique improperly models their needs.

Difficulty: coarse-grained description of needs. The needs are described so coarsely
as to make irrelevant differences between relevant attributes. In other words, stake-
holders are not allowed to prefer an alternative which does not satisfy (to some limited
extent) one or more quality attributes but which does satisfy some others to a large
extent. Example: there are three quality attributes to describe a decision (e.g., cost,
efficiency, and reliability), and yes/no scales are used to describe their fulfillment lev-
els. The technique may not suggest an alternative providing the following fulfillment
levels: an efficiency of 1% less than the requested efficiency, but with reliability of 95%
or greater, and costs 95% lower than the suggested alternatives.

Difficulty: linear and monotonic satisfaction. To cope with complexity, the satisfaction
of each quality attribute is modeled to grow linearly as its fulfillment grows [Keeney
and Raiffa 1976]. Example: concerning COTS selection, let a decision-making technique
assume both reliability and energy consumption as the key quality attributes, with en-
ergy consumption being less important than reliability. Consider a certain case where
alternative A is characterized by 10 years mean time to failure and 800 nWh energy
consumption. If there is no practical need for a mean time to failure higher than 6 years,
stakeholders would prefer alternative B that provides 6 years mean time to failure and
700 nWh energy consumption. However, a decision-making technique that models ful-
fillment as a linear monotonic function will never suggest the selection of alternative B.

Difficulty: insufficient time. During the development process, a decision might be
made when there is limited amount of time to analyze it. Stakeholders might have
insufficient time to interact for decision-making. Example: stakeholders have just a
few days before the deadline of an important release, and an algorithm has to be
chosen or changed, and then implemented. The time available for stakeholder input is
insufficient to allow them to carefully consider all the quality attributes related to the
available algorithms.

5. QUALITY MODEL OF DECISION-MAKING TECHNIQUES

Tables III and IV give references from the research literature describing mechanisms
and difficulties in decision-making: a cell is a set of references, which describe
the susceptibility of a mechanism (rows) to a specific difficulty (columns). Table V
provides a quality model for decision-making techniques (indeed, of mechanisms) by
synthesizing on Tables III and IV. In fact, Table V shows mechanisms per activity,
sorted according to how susceptible they are to a specific difficulty from Tables III
and IV. Of course, for unreferenced activities, that is, empty cells in Tables III and IV
does not differentiate among the mechanisms. In other words, the value of each cell
in Table V describes, using an ordinal scale, the susceptibility of a specific mechanism
(rows) to a specific difficulty (columns) for a given activity. For instance, a cell (r, c)
with value “1st” represents that r is a first (i.e., top, best, most suitable) mechanism
that is available for avoiding the difficulty c while enacting the indicated activity
(i.e., int(r/4) + 1). Note that the type of scale adopted in Table V (i.e., the ordinal
scale) is not by choice but a result. As a matter of fact, in the absence of further
empirical evidence, there is no chance to utilize richer scales, than the ordinal one,
for descriptive measurements of mechanisms. Table V expresses the (un-)quality (i.e.,
susceptibility to a difficulty) of any decision-making technique (i.e., of any combination
of mechanisms); therefore Table V is a quality model of decision-making techniques.
To get a useful quality model, we have refined on difficulties mentioned in the research
literature with the aim of achieving the following characteristics:

ACM Computing Surveys, Vol. 43, No. 4, Article 33, Publication date: October 2011.



33:20 D. Falessi et al.

Table III. References from Literature; Each Cell Describes References to Research Discussing Susceptibility of
Mechanism (Row) to Specific Difficulty (Column)

Difficulties
Mechanism Solution selection Stakeholders disagreement

Too complex Too simple Coarse grain. Insufficient Linear and mon.
description description des. of needs time satisfaction

Just a term
Term and use

Quality case Andersson
attribute Term and [2000]
description measure

Term, use case,
and measure

Quality
attribute
importance
description

No articulation Andersson
[2000],
Keeney and
Raiffa [1976]

Andersson
[2000],
Keeney and
Raiffa [1976]

Andersson
[2000]

Moore et al.
[2003],
Andersson
[2000], Keeney
and Raiffa
[1976]

Direct weight
Elicited weight
Utility curve

Fulfillment
description as
provided by
an alternative

On/off Andersson
[2000],
Keeney and
Raiffa [1976]

Andersson
[2000],
Keeney and
Raiffa [1976]

Andersson
[2000]

Andersson
[2000]

Order
Direct ratio
Elicited ratio

Uncertainty
description

Not expressed Andersson
[2000],
Keeney and
Raiffa [1976]

Andersson
[2000],
Keeney and
Raiffa [1976]

Gilb and
Brodie [2005],
Moore et al.
[2003],
Andersson
[2000]

Inferred from
disagreement
Related to each
Quality
attribute

Note: mon. = monotonic.

Table IV. References from Literature; Each Cell Describes References to Research Discussing Susceptibility of
Mechanism (Row) to Specific Difficulty (Column)

Difficulties
Attribute meaning Solution properties interpretation

Mechanism Coarse- Value Underest.
Perception of a term grain. ind. perception uncertainty

Just a term
Quality
attribute

Term and use
case Gilb and Brodie

[2005], Moore et al.
[2003]description Term and

measure
Term, use case,
and measure

Quality
attribute
importance
description

No articulation Andersson
[2000], Keeney
and Raiffa [1976]

Direct weight
Elicited weight
Utility curve

Fulfillment
description as
provided by
an alternative

On/off Andersson
[2000], Keeney
and Raiffa [1976]

Gilb and
Brodie [2005]

Gilb and
Brodie [2005],
Andersson
[2000]

Order
Direct ratio
Elicited ratio

Uncertainty
description

Not expressed
Gilb and
Brodie [2005],
Andersson
[2000]

Inferred from
disagreement
Related to each
Quality
attribute

ACM Computing Surveys, Vol. 43, No. 4, Article 33, Publication date: October 2011.



Decision-Making Techniques for Software Architecture Design 33:21

Ta
bl

e
V.

Q
ua

lit
y

M
od

el
of

D
ec

is
io

n-
M

ak
in

g
Te

ch
ni

qu
es

fo
rR

es
ol

vi
ng

Tr
ad

eo
ffs

in
S

of
tw

ar
e

A
rc

hi
te

ct
ur

e
D

es
ig

n;
E

ac
h

C
el

lD
es

cr
ib

es
S

us
ce

pt
ib

ili
ty

R
an

k
(1

st
Is

B
es

t,
4t

h
Is

W
or

st
)

of
M

ec
ha

ni
sm

(R
ow

s)
to

S
pe

ci
fic

D
iffi

cu
lty

(C
ol

um
ns

) D
if

fi
cu

lt
ie

s

A
ct

iv
it

y
M

ec
h

an
is

m

A
tt

ri
bu

te
S

ol
u

ti
on

se
le

ct
io

n
S

ta
ke

h
ol

de
rs

di
sa

gr
ee

m
en

t
m

ea
n

in
g

S
ol

u
ti

on
pr

op
er

ti
es

in
te

rp
re

ta
ti

on
C

oa
rs

e-
L

in
ea

r
an

d
C

oa
rs

e-
T

oo
co

m
pl

ex
T

oo
si

m
pl

e
gr

ai
n

.d
es

.
In

su
ffi

ci
en

t
m

on
.

P
er

ce
pt

io
n

gr
ai

n
.

V
al

u
e

U
n

de
re

st
.

de
sc

ri
pt

io
n

de
sc

ri
pt

io
n

of
n

ee
ds

ti
m

e
sa

ti
sf

ac
ti

on
of

a
te

rm
in

d.
pe

rc
ep

ti
on

u
n

ce
rt

ai
n

ty

Q
u

al
it

y
at

tr
ib

u
te

de
sc

ri
pt

io
n

Ju
st

a
te

rm
1s

t
2n

d
T

er
m

an
d

u
se

ca
se

2n
d

1s
t

T
er

m
an

d
m

ea
su

re
3r

d
2n

d
T

er
m

,u
se

ca
se

,
4t

h
1s

t
an

d
m

ea
su

re
Q

u
al

it
y

at
tr

ib
u

te
im

po
rt

an
ce

de
sc

ri
pt

io
n

N
o

ar
ti

cu
la

ti
on

1s
t

3r
d

1s
t

3r
d

3r
d

D
ir

ec
t

w
ei

gh
t

2n
d

2n
d

2n
d

3r
d

2n
d

E
li

ci
te

d
w

ei
gh

t
3r

d
1s

t
3r

d
2n

d
1s

t
U

ti
li

ty
cu

rv
e

3r
d

1s
t

4t
h

1s
t

1s
t

F
u

lfi
ll

m
en

t
de

sc
ri

pt
io

n
as

pr
ov

id
ed

by
an

al
te

rn
at

iv
e

O
n

/o
ff

1s
t

3r
d

3r
d

1s
t

3r
d

3r
d

1s
t

O
rd

er
2n

d
2n

d
2n

d
2n

d
2n

d
2n

d
2n

d
D

ir
ec

t
ra

ti
o

3r
d

1s
t

1s
t

3r
d

1s
t

1s
t

3r
d

E
li

ci
te

d
ra

ti
o

3r
d

1s
t

1s
t

4t
h

1s
t

1s
t

3r
d

U
n

ce
rt

ai
n

ty
de

sc
ri

pt
io

n

N
ot

ex
pr

es
se

d
1s

t
4t

h
1s

t
4t

h
In

fe
rr

ed
fr

om
di

sa
gr

ee
m

en
t

2n
d

3r
d

2n
d

3r
d

R
el

at
ed

to
ea

ch
qu

al
it

y
at

tr
ib

u
te

3r
d

2n
d

3r
d

2n
d

Q
u

al
it

y
at

tr
ib

u
te

4t
h

1s
t

4t
h

1s
t

N
ot

e:
gr

ai
n

.=
gr

ai
n

ed
;d

es
.=

de
si

gn
;m

on
.=

m
on

ot
on

ic
;i

n
d.

=
in

di
ca

ti
on

;U
n

de
re

st
.=

U
n

de
re

st
im

at
io

n
of

.

ACM Computing Surveys, Vol. 43, No. 4, Article 33, Publication date: October 2011.



33:22 D. Falessi et al.

Table VI. Example of Ranking Activity

Technique Difficulty A Difficulty A (synthesized)
Technique α 1st 1st 2nd 1st 1st
Technique β 1st 1st 1st 2nd 1st
Technique δ 1st 1st 2nd 2nd 2nd
Technique θ 1st 1st 2nd 3rd 3rd

—each mechanism is associated with one or more difficulties encountered while apply-
ing decision-making techniques in a software context;

—each difficulty is associated with one or more mechanisms; hence, it is associated
with one or more activities.

To explain how we came up with the content of Table V, we give a detailed descrip-
tion of the reasoning we applied for synthesizing the levels of susceptibility to the
difficulty insufficient time (see columns in Table III) with respect to the mechanisms
for describing the quality attribute importance (see rows in Tables III and IV). It is
obvious that the more time a mechanism requires, the more it is susceptible to the diffi-
culty insufficient time. Therefore, we reason about how much time each of the available
mechanisms would require. Consider taking a decision with n quality attributes. It is
evident that the fastest way to assign importance to the quality attributes is not do-
ing it (skip the phase); this mechanism requires zero assignments. The second fastest
mechanism is directly assigning a weight to a quality attribute; this mechanism re-
quires n assignments. Eliciting the weight by using AHP, as mentioned above, would
require n· (n−1)/2 comparisons. Therefore AHP requires more time than direct weight
when n · (n− 1)/2 > n, that is, when the number of quality attributes (n) is higher than
3, that is, the majority of the time. A utility curve is composed of ranges; each range
has a level of utility. Let x be the number of ranges used to express the importance of
each quality attributes; using utility curve requires x ·n assignments. Since x is usually
around 4, then using the utility curve requires more time than elicited weight when
4n > n · (n − 1)/2 that is, when the number of quality attributes (n) is lower than 9,
that is, the majority of the time. Based on such a reasoning activity, we have ranked
the mechanisms no articulation, direct weight, elicited weight, and utility curve with
respect to the difficulty insufficient time as first, second, third, and fourth, respectively.
The same kind of reasoning helped us to rank the rest of the mechanisms with respect
to the rest of the difficulties, as presented in Table V.

6. RANKING TABLE OF DECISION-MAKING TECHNIQUES

6.1. Introduction

Table VI gives examples of ranking activities. It ranks the existing decision-making
techniques according to their level of susceptibility to a specific difficulty. It was com-
puted by applying the contents of Tables I and II to Table V. Each cell describes the
overall rank of an existing technique with respect to a specific difficulty; such an overall
rank is computed according to the level of susceptibility of each of the four mechanisms
that the technique adopts.

A technique is a unique combination of four mechanisms. Because each of these
mechanisms contributes to a different extent to provoke a difficulty, the technique
to be used to avoid a specific difficulty should show the lowest susceptibility to that
difficulty for all its mechanisms. According to the formalism on which Table V is based,
a technique that has a better rank (i.e., 1st) than another technique (i.e., 2nd) for
a given difficulty means that the former dominates the latter with respect to that
difficulty, that is, the former is not more susceptible to that difficulty than the latter for
any mechanism, and it is less susceptible to that difficulty in at least one mechanism.

ACM Computing Surveys, Vol. 43, No. 4, Article 33, Publication date: October 2011.



Decision-Making Techniques for Software Architecture Design 33:23

Table VII. Ranking Table of Existing Decision-Making Techniques; Each Cell Describes Susceptibility Rank (1st
is best, 5th is worst) of Decision-Making Technique (Rows) to Specific Difficulty (Columns)

Difficulties
Attribute

Solution selection Stakeholders Disagreement meaning Solution Property
Decision- Too Too Coarse- Linear and Coarse-
making complex simple grain. des. Insufficient mon. Perception grain. Value Underest.
technique description description of needs time satisfaction of a term ind. perception uncertainty
A framework for
design tradeoffs

5th 3rd 1st 3rd 1st 1st 1st 1st 3rd

BAREMO 4th 3rd 2nd 2nd 1st 2nd 2nd 2nd 2nd
CBAM 1 6th 2nd 1st 2nd 2nd 2nd 2nd 1st 1st
CBAM 2 7th 1st 1st 4th 1st 1st 1st 1st 1st
CEP 8th 2nd 1st 2nd 2nd 2nd 2nd 1st 1st
Dabous and
Rabhi [2006]

1st 5th 3rd 1st 3rd 2nd 5th 3rd 1st

Impact
Estimation

4th 3rd 1st 2nd 2nd 2nd 2nd 1st 1st

ISO 9126 4th 3rd 1st 2nd 2nd 2nd 2nd 1st 3rd
NeMo-CoSe 3rd 3rd 2nd 2nd 2nd 2nd 3rd 2nd 2nd
OTSO 7th 2nd 1st 2nd 1st 1st 1st 1st 1st
PORE 1st 6th 3rd 2nd 3rd 1st 5th 3rd 1st
Quality driven
(Al-Naeem et al.
[2005])

5th 3rd 1st 2nd 1st 2nd 1st 1st 3rd

Quality driven
(Svahnberg et al.
[2003])

7th 2nd 1st 2nd 1st 2nd 1st 1st 1st

Quantitative
methods

4th 4th 1st 2nd 2nd 2nd 2nd 1st 3rd

Softgoals 2nd 4th 2nd 2nd 3rd 2nd 4th 2nd 2nd

Note: grain. = grained; des. = design; mon. = monotonic; Underest. = Underestimation of.

Therefore, with respect to a difficulty, techniques showing the same rank may perform
differently from each other, but they would perform better than any other technique
with a higher (worse) rank.

Let us show an instance of dominance: in Table VI, each technique (first column)
has four levels of susceptibility (second column) to a given difficulty (i.e., A), each level
corresponding to one mechanism. The third column provides a condensed view of the
second column, as in Table V, in which each technique has just one overall score (i.e.,
one level of susceptibility) for each given difficulty. The third column describes results
from the application of dominance to items in the second column.

6.2. Ranking Table and Application Example

Table VII provides a useful means for selecting a decision-making technique based
on the application context (i.e., undesirability of difficulties and their likelihood to
occur). We will now show an example of how Table VII can be used. During the ar-
chitecture design phase, the time available for designers to make their decisions is
usually quite limited because successive phases of the development process (e.g., de-
tailed design, implementation) cannot be started until the architecture design phase
has produced some outputs. However, strict time constraints do not affect architectural
review, because this activity is done in parallel with project development, or shortly
after. Suppose that both designers and reviewers adopt the technique A framework for
design tradeoffs [Andrews et al. 2005] reported in the first columns of Tables I and
VII. Then suppose that, for the reasons mentioned, designers and reviewers ended up
experiencing the difficulty of insufficient time and too simple description of the solution
selection respectively. As a consequence, designers will adopt Table VII to search for
a technique with a level of susceptibility to insufficient time that is better than that

ACM Computing Surveys, Vol. 43, No. 4, Article 33, Publication date: October 2011.



33:24 D. Falessi et al.

to a framework for design tradeoffs. Hence they may choose to adopt the technique of
Dabous and Rabhi [2006]; in fact, this is the technique with the lowest level of sus-
ceptibility (i.e., 1st) to the difficulty insufficient time. Similarly, reviewers will adopt
Table VII to search for a technique with a level of susceptibility to too simple description
of the solution selection that is better than that to a framework for design tradeoffs.
Hence reviewers may choose to adopt the technique CBAM 2 [Moore et al. 2003]; in
fact, this is the technique with the lowest level of susceptibility (i.e., 1st) to difficulty
too simple description of the solution selection.

This example shows how different techniques may be chosen according to an enumer-
ation of specific difficulties to avoid. In particular, we note that in the above example
designers and reviewers, starting from the same point (the initial technique), were
drawn in opposite directions (based on the two difficulties to avoid). In the case design-
ers and reviewers make opposite selections, then they would actually aggravate the
encountered difficulty. In fact, CBAM 2 (or the technique of Dabous and Rabhi [2006],
respectively) would be troublesome for designers (or reviewers) because its level of
susceptibility is worse than that of a framework for design tradeoffs for the difficulty
of insufficient time (or too simple description of the solution selection).

6.3. Discussion

Table VII reveals that no decision-making technique is more (or less) susceptible than
any other technique to the entire set of difficulties taken into account in this study,
that is, no decision-making technique dominates (is always better than) any other one.
In fact, Table VII shows that every decision-making technique (e.g., A) that is better
(i.e., less susceptible) than another technique (e.g., B) with respect to a specific set
of difficulties (e.g., i and j), is also worse than that technique with respect to some
other difficulties (e.g., A is more susceptible than B to the difficulty k). Consequently,
because the quality of a technique depends on which difficulties, issues, or troubles
the architects want to avoid, there is no “best” decision-making technique for resolving
architectural tradeoffs. However, there are techniques that are more susceptible than
others to specific difficulties.

Since being more susceptible to a difficulty does not mean that the technique provokes
it, then the approach to select a decision-making technique needs to be adaptive. For
this reason, the proposed ranking table provides a useful means for selecting decision-
making technique to adopt and tuning it.

Note that trying to select the best decision-making technique could lead to a paradox:
the selection of a decision-making technique “needs to use the best decision-making
method! This decision-making paradox makes any attempt in solving this difficulty
to be of limited success” [Triantaphyllou 2004, page 199]. In this survey we have
been providing a systematic way to select decision-making techniques for software
architecture design; hence we made a first step toward a new field called meta-decision-
making, that is, the issue of deciding how to decide.

For future work we are currently developing the first meta-decision-making support
system for software architecture design. Such a system would assist the user in select-
ing the most suitable decision-making technique according to the expected difficulties
to be avoided.

7. CONCLUSION

In this article we have proposed the following:

—a characterization schema that (1) is able to differentiate among different decision-
making techniques, and (2) clearly reveals variability and commonalities among
them;

ACM Computing Surveys, Vol. 43, No. 4, Article 33, Publication date: October 2011.



Decision-Making Techniques for Software Architecture Design 33:25

—a validation for that schema by using it to characterize 15 existing decision-making
techniques;

—a set of quality attributes for decision-making techniques that can be used as selection
criteria;

—a quality model that relates the proposed quality attributes with the elements (i.e.,
mechanisms) of the aforementioned characterization schema, and

—a ranking table of the decision-making techniques that supports their selection by
architects.

Most of the content of the article comes from analyzing the literature on software
architecture and decision-making techniques according to standard procedures
[Kitchenham 2004; Biolchini et al. 2007].

We view a good decision-making technique as one that avoids the selection of a
worse alternative and, at the same time, is easy to use. Consequently, our key idea
was to use the difficulties that an architect may encounter as the organizing principle
on which to build a quality model for choosing among decision-making techniques.
Therefore, the “level of susceptibility” of a specific technique to specific difficulties
becomes a (un-)quality attribute of the decision-making technique and which acts as
a criterion for its selection.

Our results reveal that selecting a decision-making technique is difficult because it
is not possible to assert that any technique is unambiguously better than any other.
In fact, no decision-making technique is more (or less) susceptible than any other
technique to all the difficulties taken into account in this study. On the contrary, a
decision-making technique (e.g., A) that is better (i.e., less susceptible) than another
technique (e.g., B) with respect to a specific set of difficulties (e.g., i, and j), it is also
worse with respect to some other difficulties (e.g., A is more susceptible than B to
difficulty k).

In other words, there is no perfect decision-making technique—no technique that
dominates all the others. Consequently, for resolving architectural tradeoffs, because
the quality of a technique depends on which difficulties the decision-makers (the archi-
tects) want to avoid, there is no “best” decision-making technique to look for. However,
there are techniques that are more susceptible than others to specific difficulties. There-
fore, architects should pick a decision-making technique based on the difficulties that
they want to avoid. Since there is a lack of empirical evidence in understanding under
which circumstances a particular decision-making technique provokes which difficulty,
you cannot predict the type of difficulties you will run into. As a consequence, the
approach to select a decision-making technique needs to be adaptive. For that reason,
the proposed ranking table provides a useful means for selecting the decision-making
technique to adopt and tuning it.

In conclusion, the present survey and analysis framework provides insight into
decision-making techniques that will help architects in (1) selecting and customizing
the decision-making technique that is the most suitable to use based on the char-
acteristics of the issue to solve, the usage context, and the difficulties encountered
while deciding, and (2) employing the decision-making technique by making explicit
its principles, its differences from the others techniques, and, most importantly,
its limitations (i.e., the difficulties that are most likely to be encountered when
using it).

In this article, we have described the decision-making techniques as alternatives
available to architects for choosing among a finite set of architectural alternatives.
Consequently, the provided quality model of decision-making techniques is the
first contribution to meta-decision-making, that is, the issue of deciding how to
decide.

ACM Computing Surveys, Vol. 43, No. 4, Article 33, Publication date: October 2011.



33:26 D. Falessi et al.

REFERENCES

AL-NAEEM, T., GORTON, I., ALI BABAR, M., RABHI, F., AND BENATALLAH, B. 2005. A quality-driven systematic
approach for architecting distributed software applications. In Proceedings of the 27th International
Conference on Software Engineering. ACM Press, New York, NY.

ALI BABAR, M., ZHU, L., AND JEFFERY, R. 2004. A framework for classifying and comparing software architecture
evaluation methods. In Proceedings of the Australian Software Engineering Conference.

AMERICA, P., OBBINK, H., AND ROMMES, E. 2003. Multi-view variation modeling for scenario analysis. In Pro-
ceedings of the 5th International Workshop on Product Family Engineering (PFE-5). Springer-Verlag.

ANDERSSON, J. 2000. A survey of multiobjective optimization in engineering design. LiTH-IKP-R-1097, Tech.
rep. Department of Mechanical Engineering, Linkoping University, Linkoping, Sweden.

ANDREWS, A., MANCEBO, E., RUNESON, P., AND FRANCE, R. 2005. A framework for design tradeoffs. Softw. Quality
J. 13, 4, 28.

BANDOR, M. S. 2006. Quantitative methods for software selection and evaluation. Tech. rep. CMU/SEI-2006-
TN-026, Carnegie Mellon University.

BARBACCI, M. R., ELLISON, R., LATTANZE, A. J., STAFFORD, J. A., WEINSTOCK, C. B., AND WOOD, W. G. 2003. Quality
attribute workshops (QAWs), 3rd ed. http://www.sei.cmu.edu/publications/documents/03.reports/
03tr016.html

BASILI, V., CALDIERA, G., AND CANTONE, G. 1992. A reference architecture for the component factory. ACM Trans.
Softw. Eng. Method. 1, 1, 53–80.

BASS, L., CLEMENTS, P., AND KAZMAN, R. 2003. Software Architecture in Practice. 2nd ed. Addison-Wesley.
Reading, MA.

BIOLCHINI, J. C. D. A., MIAN, P. G., NATALI, A. C. C., CONTE, T. U., AND TRAVASSOS, G. H. 2007. Scientific research
ontology to support systematic review in software engineering. Advanced Eng. Inform. 21, 2, 133–151.

BOOCH, G. 2007. The irrelevance of architecture. IEEE Softw. 24, 3, 10–11.
BOSCH, J. 2000. Design and Use of Software Architecture: Adopting and Evolving a Product-Line Approach.

Addison-Wesley, Reading, MA.
BOSCH, J. 2004. Software architecture: The next step. In Proceedings of the 1st European Workshop on

Software Architecture (EWSA). Springer-Verlag, Berlin, Germany.
BROOKS, F. P. 1987. No silver bullet: Essence and accidents of software engineering. IEEE Comp. 20, 4, 10–19.
CANTONE, G. AND DONZELLI, P. 1999. Goal-oriented software measurement models. In Proceedings of the

Sofware Control and Metrics for Software Quality Conference. Shaker Publishing, Maastricht.
CAVANAUGH, C. P. AND POLEN, S. M. 2002. Add decision analysis to your COTS selection process. J. Defense

Softw. Eng. 21–25.
CHUNG, L., GROSS, D., AND YU, E. 1999. Architectural design to meet stakeholder requirements. In. P Donohue,

Software Architecture, Kluwer Academic, TX.
CLEMENTS, P., KAZMAN, R., AND KLEIN, M. 2002. Evaluating Software Architecture: Methods and Case Studies.

Addison-Wesley, Reading, MA.
CLEMENTS, P. AND NORTHROP, L. 2002. Software Product Lines: Practice and Patterns. Addison-Wesley, Reading,

MA.
DABOUS, F. T. AND RABHI, F. A. 2006. A framework for evaluating alternative architectures and its application

to financial business processes. In Poceedings of the Australian Software Engineering Conference.
DING, L. AND MEDVIDOVIC, N. 2001. Focus: A light-weight, incremental approach to software architecture

recovery and evolution. In Proceedings of the Working IEEE/IFIP Conference on Software Architecture
(WICSA). IEEE Computer Society Press, Los Alamitos, CA.

DOBRICA, L. AND NIEMELÄ, E. 2002. A survey on software architecture analysis methods. IEEE Trans. Softw.
Eng. 28, 7, 638–653.

EELES, P. 2005. Capturing Architectural Requirements. IBM Rational Developer Works. http://www.ibm.
com/developerworks/rational/library/4706.html.

FALESSI, D., ALI BABAR, M., CANTONE, G., AND KRUCHTEN, P. 2010. Applying empirical software engineer-
ing to software architecture: Challenges and lessons learned. Empir. Softw. Eng. to appear. DOI
10.1007/s10664-009-9121-0.

FALESSI, D., CANTONE, G., AND BECKER, M. 2006. Documenting design decision rationale to improve individual
and team design decision making: An experimental evaluation. In Proceedings of the 5th ACM/IEEE
International Symposium on Empirical Software Engineering.

FALESSI, D., CANTONE, G., AND KRUCHTEN, P. 2007a. Do architecture design methods meet architects’ needs?
In Proceedings of the 6th Working IEEE/IFIP Conference on Software Architecture. IEEE Computer
Society Press, Los Alamitos, CA.

ACM Computing Surveys, Vol. 43, No. 4, Article 33, Publication date: October 2011.



Decision-Making Techniques for Software Architecture Design 33:27

FALESSI, D., CANTONE, G., AND KRUCHTEN, P. 2008. Value-based design decision rationale documentation: Princi-
ples and empirical feasibility study. In Proceeding of the 7th Working IEEE/IFIP Conference on Software
Architecture (WICSA). IEEE Computer Society Press, Los Alamitos, CA.

FALESSI, D., KRUCHTEN, P., AND CANTONE, G. 2007b. Issues in applying empirical software engi-
neering to software architecture. In Proceedings of the 1st European Conference on Software
Architecture.

GILB, T. AND BRODIE, L. 2005. Competitive Engineering: A Handbook for Systems Engineering, Requirements
Engineering, and Software Engineering Using Planguage. Elsevier Butterworth Heinemann. Oxford,
UK.

GOMAA, H. 2004. Designing-Software Product Lines with UML: From Use Cases to Pattern-Based Software
Architectures. Addison Wesley Longman, Reading, MA.

GRÜNBACHER, P., EGYED, A., AND MEDVIDOVIC, N. 2004. Reconciling software requirements and architectures
with intermediate models. J. Softw. Syst. Model. 3, 3, 235–253.

HARMAN, M. 2007. The current state and future of search based software engineering. In Proceedings of
the International Conference on Software Engineering: Future of Software Engineering IEEE Computer
Society Press, Los Alamitos, CA.

HOFMEISTER, C., KRUCHTEN, P., NORD, R. L., OBBINK, H., RAN, A., AND AMERICA, P. 2007. A general model
of software architecture design derived from five industrial approaches. J. Syst. Softw. 80, 1,
106–126.

JANSEN, A. AND BOSCH, J. 2005. Software architecture as a set of architectural design decisions. In Proceedings
of the 5th Working IEEE/IFIP Conference on Software Architecture (WICSA).

JAZAYERI, M. 2002. On architectural stability and evolution. In Proceedings of the 7th Ada-Europe Interna-
tional Conference on Reliable Software Technologies.

JAZAYERI, M., RAN, A., AND LINDEN, F. V. D. 2000. Software Architecture for Product Families: Principles and
Practice. Addison-Wesley, Reading, MA.

KANO. 1993. A special issue on Kano’s methods for understanding customer-defined quality. Center Quality
Manag. J. 2, 4, 3–35.

KARLSSON, L., HOST, M., AND REGNELL, B. 2006. Evaluating the practical use of different measurement scales
in requirements prioritisation. In Proceedings of the 5th ACM/IEEE International Symposium on Em-
pirical Software Engineering. ACM Press, New York, NY.

KAZMAN, R., JAI, A., AND KLEIN, M. 2001. Quantifying the costs and benefits of architectural decisions. In
Proceedings of the 23rd International Conference on Software Engineering.

KEENEY, R. L. AND RAIFFA, H. 1976. Decisions with Multiple Objectives: Preferences and Value Tradeoffs. Wiley,
New York, NY.

KITCHENHAM, B. 2004. Procedures for performing systematic reviews. Joint tech. rep. TR/SE-0401 and NICTA
0400011T.1, Keele University, Staffordshire, U.K.

KLEIN, G. 1999. Sources of Power: How People Make Decisions MIT Press. Cambridge, MA.
KONTIO, J. 1996. A case study in applying a systematic method for COTS selection. In Proceedings of the 18th

International Conference on Software Engineering (ICSE).
KRUCHTEN, P. 1995. Mommy, where do software architectures come from? In Proceedings of the 1st Interna-

tional Workshop on Architectures for Software Systems (IWASS1).
KRUCHTEN, P. 2003. The Rational Unified Process: An Introduction, 3rd Ed. Addison-Wesley Professional,

Reading, MA.
KRUCHTEN, P. 2004. An ontology of architectural design decisions in software intensive systems. In Proceedings

of the 2nd Groningen Workshop on Software Variability.
KRUCHTEN, P., CAPILLA, R., AND DUENAS, J. 2009. The decision view’s role in software architecture practice.

IEEE Softw. 26, 2, 36–42.
KRUCHTEN, P., OBBINK, H., AND STAFFORD, J. 2006. The past, present and future for software architecture. IEEE

Softw. 23, 2, 2–10.
LI, B., ZENG, G., AND LIN, Z. 1999. A domain specific software architecture style for CSCD system. ACM

SIGSOFT Softw. Eng. Notes 24, 1, 59–64.
LI, J., CONRADI, R., BUNSE, C., TORCHIANO, M., SLYNGSTAD, O. P. N., AND MORISIO, M. 2009. Development with off

the shelf components: 10 facts. IEEE Softw. 26, 2, 80–870.
LOZANO-TELLO, A. AND GÓMEZ-PÉREZ, A. 2002. BAREMO: How to choose the appropriate software component

using the analytic hierarchy process. In Proceedings of the 14th International Conference on Software
Engineering and Knowledge Engineering. ACM Press, New York, NY.

MARANZANO, J. F., ROZSYPAL, S. A., ZIMMERMAN, G. H., WARNKEN, G. W., WIRTH, P. E., AND WEISS, D. M. 2005.
Architecture reviews: Practice and experience. IEEE Softw. 22, 2, 34–43.

ACM Computing Surveys, Vol. 43, No. 4, Article 33, Publication date: October 2011.



33:28 D. Falessi et al.

MOORE, M., KAZMAN, R., KLEIN, M., AND ASUNDI, J. 2003. Quantifying the value of architecture design decisions:
Lessons from the field. In Proceedings of the 25th International Conference on Software Engineering,
(ICSE).

NCUBE, C. AND MAIDEN, N. 1999. PORE: Procurement oriented requirements engineering method for the
component-based systems engineering development paradigm. In Proceedings of the 2nd International
Workshop on CBSE.

NUSEIBEH, B. 2001. Weaving together requirements and architectures. Computer 34, 3, 115–117.
OBBINK, H., KRUCHTEN, P., KOZACZYNSKI, W., HILLIARD, R., RAN, A., POSTEMA, H., LUTZ, D., KAZMAN, R., TRACZ, W.,

AND KAHANE, E. 2002. Report on software architecture review and assessment (SARA), Version 1.0. At
http://philippe.kruchten.com/architecture/SARAv1.pdf.

OZKAYA, I., BASS, L., SANGWAN, R. S., AND NORD, R. L. 2008. Making practical use of quality attribute information.
IEEE Softw. 25, 2, 25–33.

SAATY, T. L. 2000. Fundamentals of Decision Making and Priority Theory with the Analytic Hierarchy Process.
RWS Publications. Pittsburgh, PA.

SCHUSTER, N., ZIMMERMANN, O., AND PAUTASSO, C. 2007. ADkwik: Web 2.0 collaboration system for architectural
decision engineering. In Proceedings of the 19th International Conference on Software Engineering and
Knowledge Engineering (SEKE).

SEI. 2007. Published software architecture definitions. http://www.sei.cmu.edu/architecture/published_
definitions.html.

SHAW, M. AND CLEMENTS, P. 2006. The golden age of software architecture. IEEE Softw. 23, 2, 31–39.
SHAW, M. AND GARLAN, D. 1996. Software Architecture: Perspectives on an Emerging Discipline. Prentice-Hall.

Upper Saddle River, NJ.
SVAHNBERG, M., WOHLIN, C., LUNBERG, L., AND MATTSSON, M. 2003. A quality-driven decision support method

for identifying software architecture candidates. Int. J. Softw. Eng. Knowl. Eng. 13, 5, 547–575.
TAYLOR, R. N., MEDVIDOVIC, N., AND DASHOFY, E. 2009. Software Architecture: Foundations, Theory, and Practice.

Wiley Publishing, New York, NY.
TRIANTAPHYLLOU, E. 2004. Multi-Criteria Decision Making Methods: A Comparative Study. Kluwer Academic

Publisher, Dordrecht, The Netherlands.
WANYAMA, T. AND FAR, B. H. 2005. Towards providing decision support for COTS selection. In Proceedings of

the Canadian Conference on Electrical and Computer Engineering.
ZIMMERMANN, O., GSCHWIND, T., KÜSTER, J., LEYMANN, F., AND SCHUSTER, N. 2007. Reusable architectural decision

models for enterprise application development. In Proceedings of the Conference on Quality of Softwares.
ZIMMERMANN, O., KOEHLER, J., LEYMANN, F., POLLEY, R., AND SCHUSTER, N. 2009. Managing architectural decision

models with dependency relations, integrity constraints, and production rules. J. Syst. Softw. 82, 8,
1249–1267.

Received December 2008; revised September 2009; accepted January 2010

ACM Computing Surveys, Vol. 43, No. 4, Article 33, Publication date: October 2011.


